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Abstract

In this study, a simple algorithm based on a mathematical model is proposed to identify crack location and depth in a

stepped cantilever Euler–Bernoulli beam carrying a rigid disk at its tip. The mathematical model that describes the lateral

vibration of the beam is derived using the assumed mode method that coalesces with the Lagrange’s equation. A massless

torsional spring whose stiffness depend on the severity of the crack is used as a crack model. Using this crack modeling

method combined with the assumed mode method, the crack effect is introduced to the system flexibility as global

additional structural flexibility. For the assumed mode method, the mode shapes for two uniform beams connected by a

massless torsional spring (simulating the cracked beam) are adopted as trial functions. The proposed identification

algorithm utilizes the first three natural frequencies shift of the beam caused by a crack to estimate its location and depth.

In addition, the proposed mathematical model is used to illustrate the effect of the crack depth and its location on the

dynamic characteristics of the system. Using the commercial finite element (FE) software (ANSYS 8.0), three-dimensional

finite element analysis (FEA) is carried out to show the accuracy of the derived mathematical model and to demonstrate

the reliability of the proposed crack identification algorithm. The analysis showed consistency with the assumed mode

results. It showed that the error in concurrent prediction of crack depth and its location using the proposed algorithm is

about 10%.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical accidents, fatigue, erosion, corrosion, as well as environmental attacks, are issues that can lead
to a crack in a mechanical structure. Cracks are indications of an impending mechanical failure. In view of the
fact that the presence of a crack in a structure could lead to devastating results, investigating the structural
integrity of machines was an extremely active area of research in the last two decades. Although the theory and
technology of non-destructive testing is highly enhanced, inspecting the integrity of a structure is a labor-
intensive and protracted process that should only be carried out when it is truly needed. One tactic for
reducing inspection-related shutdown time and cost is to furnish a mechanism with an early warning failure
device. Such a device monitors, online, crack-related abnormalities in the behavior of a system. If the device
gives a warning signal that a crack is present, an advisory message is given out to the operator to shutdown the
machine and have it inspected. For the development of such early warning devices, awareness of the dynamics
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a crack depth
B beam width
D crack depth ratio (a/Hc)
E modulus of elasticity
H1 half beam height at thick section
H2 half beam height at thin section
Hc half beam height at crack location
H12 non-dimensional parameter H1/H2

Hc2 non-dimensional parameter Hc/H2

H2L non-dimensional parameter H2/Lb

I beam cross section area moment of
inertia about Z-axis

J beam mass moment of inertia per unit
length about Z-axis J ¼ rI

Jd disk mass moment of inertia about Z-
axis Jd ¼MdR2

d

K modal stiffness matrix for intact beam of
N�N dimension

Kc variation in modal stiffness matrix due to
crack of N�N dimension

Lb beam length
L1 step location on the beam
Lc crack location
mb mass per unit length of the beam
M modal mass matrix for intact beam of

N�N dimension
Mb beam total mass
Md disk mass
Mdb disk to beam mass ratio (Md/Mb)
N number of degrees of freedom
qi ith generalized coordinate for deflection

Qi
dc ith mode shape vector for cracked beam

with disk of N� 1 dimension
Qi

d ith mode shape vector for intact beam
with disk of N� 1 dimension

Rd disk radius of gyration about Z-axis
Rdb non-dimensional parameter Rd/Lb

t* reference time ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rL4=EH2

2

q
T, U beam kinetic and strain energy, respec-

tively
Vb lateral beam deflection
bi

d ith non-dimensional natural frequency of
intact beam with disk

bi
dc ith non-dimensional natural frequency of

cracked beam with disk
fi ith mode shape for lateral deflection
kc crack equivalent stiffness
yZ beam cross-section angel of rotation due

to bending
Yc dimensionless crack equivalent flexibility
t t/t*

x x/Lb

xc Lc/Lb

x1 L1/Lb

( )b quantity related to beam
( )d quantity related to disk
( )c quantity related to crack
( )T transpose form
(*) total derivative with respect to t
(d) total derivative with respect to t

( )0 total derivative with respect to x
D(D) crack depth distance function
Gi(x) ith mode equivalent crack flexibility
s(x) modes distance function
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of cracked structures is important. A crack in a structure may be realized from the local discrepancy in
structure stiffness affecting the global dynamic behavior of the structure. Also, a crack may manifest its
presence in a beam-like structure through the changes in the natural frequencies and mode shapes of the
system. These indicators may also be used to measure the extent of the damage and to determine its location.

Several researchers showed interest in developing algorithms to detect cracks in beams. The motivation for
this interest is that the identification of cracks in a beam furnishes an important point of reference to test the
precision of identification techniques; also, many mechanical systems have a dynamic behavior similar to a
single beam, like shafts, blades and robot arm.

The fact that a crack or a local defect affects the dynamic response of a structural member is known long
time ago. Numerous attempts aimed to quantifying the local defects are reported in the literature. The effect of
a notch on the structure flexibility is simulated by a local flexibility, a local bending moment or a reduced cross
section, with magnitudes that were estimated by experimentation or by the use of fracture mechanics methods.
In most studies, researchers utilize the changes in the system’s dynamic behavior as a diagnostic tool for
damage detection.
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A comprehensive literature survey of the analytical, numerical and experimental investigations on the
detection of a structural flaw based on the changes in dynamic characteristics can be found in Dimarogonas
[1]. Chondros and Dimarogonas [2] modeled the presence of a crack and the corresponding reduction of
flexural stiffness by means of a linear massless rotational spring, whose stiffness is related to crack depth.
Chondros et al. [3] developed a theory for modeling the lateral vibration of cracked Euler–Bernoulli
continuous beams with single or double-edge open cracks. They derived the governing differential equation of
motion and the corresponding boundary conditions of a cracked beam assuming a one-dimensional
continuum. By describing a displacement field near the crack, fractural mechanics was used to model the crack
as a continuous flexibility. Also, Chondros et al. [4] detected crack by using a continuous cracked beam
vibration theory for prediction of changes in the transverse vibration of a simply supported beam with a
breathing crack. He et al. [5] proposed a genetic algorithm based method for shaft crack detection.
Dharmaraju et al. [6] developed a general identification algorithm to estimate the crack flexibility coefficients
and the crack depth based on the forced response information of the beam. They used an Euler–Bernoulli
beam element in the FE modeling, and the crack has been modeled by a local compliance matrix, with four
degrees of freedom. Zheng and Kessissoglou [7] used a finite element method (FEM) to obtain the natural
frequencies and mode shapes of a cracked beam. They obtained the total structure flexibility matrix by adding
the crack flexibility to the flexibility matrix of the intact beam element as an overall additional flexibility
matrix instead of adding it as local flexibility matrix; using this derivation, they were able to predict the natural
frequencies more accurately. Sekhar [8] proposed a method for on-line identification of a rotor with dual
cracks. The FEM is used to model the rotor, and the cracks are introduced as additional local flexibility to the
system flexibility. Ruotolo et al. [9] investigated the forced harmonic response of a cracked cantilever beam.
Their study was performed using a FE model that is called the closing crack model. Undamaged parts of the
beam were modeled using an Euler-type FE having two degrees of freedom: transverse displacement and
rotation at each node. Both fully opened and fully closed cracks were used to represent the damaged element.
Chen and Jeng [10] exploited a FE model to investigate the dynamical behavior of pre-twist rotating blades
with a single edge crack. They investigated the effect of crack position and crack depth on the natural
frequencies of the blade. Yang et al. [11] studied the influence of cracks on the vibration of a beam by using an
energy-based numerical model. They used Galerkin’s method to determine beam modes and frequencies.
Dilena and Morassi [12] identified cracks by utilizing the shifts in beam natural frequencies and anti-resonant
frequencies due to a crack. The theoretical results are verified by comparison with the dynamic measurements
that performed on cracked steel beams with free–free boundary conditions. Gounaris and Papadopoulos [13]
proposed a new technique for crack detection in a beam. They studied a model that has a transverse surface
crack that was assumed to be always opened. The technique is based on the fact that the eigenmodes of any
cracked structure are different from those of an un-cracked one. Their concept was to link the mode shape
differences with the crack position and depth. The correlated differences were chosen to be: (a) the amplitude
ratio, measured at two positions, and (b) the position of the node of the vibrating mode. Masoud et al. [14]
suggested a mathematical model to study the effect of crack depth on the transverse vibration characteristics
of a pre-stressed fixed–fixed cracked beam. They studied the effect of interaction between the crack depth and
axial load on the beam natural frequencies. An experimental verification was carried that verified the obtained
theoretical results. Chati et al. [15] studied the dynamic characteristics of a cantilever beam having a transverse
edge crack by using modal analysis. The nonlinearity induced from the crack opening and closing was
modeled as a piecewise linear system utilizing the idea of bilinear frequencies. The FEM was used to obtain the
natural frequencies in each linear region. Also, a perturbation method was used to obtain the non-linear
normal modes of vibration and the related period of motion. Hasan [16] used a perturbation method to
evaluate the first order perturbation of the eigenfrequencies of a beam on an elastic foundation. The local
flexibility introduced by the crack in the cracked section was represented by a massless torsional spring whose
stiffness dependeds on the severity of the crack. He found that the magnitude of change in the eigenfrequenies
is a function of the severity and the location of the crack. Sunder et al. [17] used the weak non-linear character
of a cracked vibrating beam to determine the crack location and depth. Chen and Chen [18] investigated the
stability of a rotating cracked shaft subjected to an axial compressive end force. They investigated the effect of
existing opened cracks on the whirling speeds of the shaft. They showed that two principal instability regions
of different types appear, namely divergence and flutter, when the shaft is subjected to an increasing end load.
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Tsai and Wang [19] studied vibration of a rotor with multiple cracks. More recently, Chondros [20] used the
variational principle to derive the governing eqution of motion for the torsional vibration of a cylindrical shaft
with circumferential crack. He used fracture mechanics to find the displacement field in the vicinity of the
crack, which is used to model the crack as continuous flexibility.

Most of the crack identification techniques cited in the previous literature are applied to a uniform cross
section beam like structure, without including the effects of beam rotary inertia and any lumped attachments
like a disk carried by the beam. Including the effects of beam rotary inertia and/or lumped attachments
requires employing techniques that use complicated and lengthy modeling procedures as FE in which, a
cracked beam element has been developed to simulate the crack, or a very fine mesh in the vicinity of the crack
is used in the case of three-dimensional FEA. Also the disk in these works was modeled as concentrated mass
along the beam axis. Furthermore, varying the crack location in FEA is difficult and lengthy task since it
requires rebuilding of the FE model for each new crack location. In addition, most of the previous works
treated the crack as an additional local flexibility that introduced to the global flexibility of the intact beam to
obtain the total cracked beam flexibility matrix. Most of crack identification techniques utilize the global
change in the structure dynamic characteristics due to crack to identify it, consequently introducing the crack
as local flexibility may lead to inaccurate modeling of the cracked beam [7]. Also, if a disk is attached to the
structure, an additional alteration is introduced to its global dynamic characteristics due to its translational
and rotary inertia. As the modal methods exploit the global changes in the dynamic characteristics of a
structure to detect crack, the modification resulting from an attached disk will interfere with that resulting
from crack. Therefore, if the variation in the global system dynamic characteristics (natural frequencies and
mode shapes of the system) is used to identify cracks precisely, the interaction effect between the attached disk
and the crack should be taken into consideration. In addition the crack flexibility should be introduced as
global effect in the system flexibility.

The present work proposes a simple crack identification technique based on a suggested mathematical
model to identify crack position and depth in a stepped cantilever beam carrying a rigid disk at its tip. The
identification technique utilizes the difference in the first three natural frequencies between a cracked and
intact beam to identify the crack location and depth. It has many advantages because it based on a
mathematical model that account for the interaction between the effects of crack, beam rotary inertia and disk
inertia on the dynamic characteristics of the beam. The governing equations of motion for the stepped beam
carrying a rigid disk are derived using the assumed mode method combined with Lagrange’s equation. Using
this method to model the beam under consideration and adopting a crack model [21] to represent its flexibility
lead to a simple mathematical model that introduce the crack and the disk inertia as global quantity.
Consequently their effects on the system dynamic characteristics will appear as global one. This appearance
matches the real case in which the effects of the crack and the disk inertia are observed through the global
modification of the system dynamic characteristics (natural frequencies and mode shapes). The mode shapes
for two uniform beams connected by a massless torsional spring (simulating the cracked beam) are used as
trial functions in the assumed mode method [14]. The proposed mathematical model is verified using 3-D FEA
with very fine mesh in the vicinity of the crack, where the commercial FE package ANSYS (version 8) is used
in the simulation. The effect of crack depth and location on the system’s natural frequencies is investigated. To
demonstrate the reliability and the accuracy of the proposed crack identification technique, FE results are used
to represent measured data; these data are introduced into the crack identification technique to retrieve the
crack depth and location.

2. Mathematical modeling

The lateral vibration of a fixed-free stepped beam with symmetrical double-sided crack carrying a rigid disk
at its tip is modeled (Fig. 1a). The beam is assumed to have uniform mass density, modulus of elasticity, and
two dissimilar uniform rectangular cross sections. The disk is modeled as a concentrated mass, with rotary
moment of inertia, attached to the beam tip. Also the shaft cross section rotary inertia is included in the model.
A massless torsional spring whose stiffness depends on the severity of the crack is used as crack model. Using
this crack modeling method combined with the assumed mode method, the crack effect can be introduced to
the system as global additional structural flexibility.
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Fig. 1. (a) Schematic diagram for cracked stepped beam carrying a rigid disk and (b) solid model used in finite element and the mish layout

for the beam.
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The beam centerline is assumed to have only lateral deformation in the Y direction equal to Vb(x, t). Due to
this lateral deformation, the beam cross section has a rigid body rotation about the Z-axis, yZ ¼ qVbðx; tÞ=qx.
The beam deformation causes disk rigid body translation and rotation equal to Vb(Lb, t) and
yd ¼ qV bðLb; tÞ=qx, respectively. As a result of the above motions the system kinetic (T) and strain (U)
energies will be:

T ¼
1

2

Z Lb

0

mbðxÞ
qVbðx; tÞ

qt

� �2
dxþ

1

2

Z Lb

0

JðxÞ
q2V bðx; tÞ

qtqx

� �2
dx

þ
1

2
Md

qV bðLb; tÞ

qt

� �2
þ Jd

q2V bðLb; tÞ

qtqx

� �2
, ð1Þ

U ¼
1

2

Z Lb

0

EIðxÞ
q2V bðx; tÞ

q2x

� �2
dxþ

1

2

ðEIcÞ
2

kc

q2VbðLc; tÞ

q2x

� �2
, (2)

where 1=kc is rotational spring flexibility that used to model a double-sided crack [21]

1

kc

¼
9pD2

BH2
cE
ð0:5033� 0:9022Dþ 3:412D2 � 3:181D3 þ 5:793D4Þ,

where B is beam width (measured in the Z direction), D crack depth ratio (crack depth to half beam height at
crack location), Hc half beam height at crack location and E is the modulus of elasticity of the material. The
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above equivalent crack modeling has a significant accuracy for crack depth ratio less than 0.5. This was shown
by two different manners; experimentally by Masoud [14] and using FEA by Haisty [21]. As far as the assume
mode method is concerned, the beam centerline deflection Vb(x, t) is expressed as

V bðx; tÞ ¼
XN

n¼1

fnðxÞqnðtÞ, (3)

where qn(t) is the nth generalized coordinate and fn(x) is the nth bending mode shape for constant cross
section cracked beam [14]. Substituting the centerline deflection, Eq. (3) into the kinetic and strain energies
Eqs. (1) and (2) then applying the Lagrange’s equation

d

dt

qT

q _qi

� �
�

qT

qqi

þ
qU

qqi

¼ 0 (4)

lead to the equations of motion for the system. The non-dimensional form of these equations for any
generalized coordinate qm is

½MdbððH12 � 1Þx1 þ 1Þðfmð1Þfnð1Þ þ R2
dbf
0
mð1Þf

0
nð1ÞÞ þH12

Z x1

0

fmðxÞ
�

fnðxÞdx

þ

Z 1

x1

fmðxÞfnðxÞdxþ
H2

2L

3
H3

12

Z x1

0

f0mðxÞf
0
nðxÞdxþ

Z 1

x1

f0mðxÞf
0
nðxÞdx

� ��
qn

��

þ H3
12

Z x1

0

f00mðxÞf
00
nðxÞdxþ

Z 1

x1

f00mðxÞf
00
nðxÞdxþH3

c2Ycf
00
mðxcÞf

00
nðxcÞ

� �
qn ¼ 0,

n ¼ 1; 2; . . . ;N; m ¼ 1; 2; . . . ;N, ð5Þ

where (Yc) is the non-dimensional flexibility of the symmetric double-sided crack and given by

Yc ¼ 6pD2 Hc

Lb

ð0:5033� 0:9022Dþ 3:412D2 � 3:181D3 þ 5:793D4Þ.

If a simple harmonic motion is assumed for beam deflection, the non-dimensional differential equation is
represented in the following eigenvalue problem format:

½�ðbi
dcÞ

2Mþ KþYcKc�Q
i
dc ¼ 0, (6)

where the elements of matrix Kc are the second derivative of the trial functions evaluated at crack location
only, and bi

dc is the ith non-dimensional natural frequency of the system. The above equation is reduced to
represent the lateral vibration of intact beam carrying rigid disk, if the crack flexibility Yc is set to zero:

½�ðbi
dÞ

2Mþ K�Qi
d ¼ 0. (7)

After mathematical manipulation for Eqs. (6) and (7), the crack flexibility can be obtained in terms of the
intact and cracked system dynamic characteristics as

Yc ¼ GiðxÞ,

GiðxÞ ¼
ðbi

dcÞ
2
� ðbi

d Þ
2

ðbi
dÞ

2
�

QiT

d KQ
i
d

QiT

dcKcQ
i
dc

. ð8Þ

Gi(x) is named as ith mode equivalent crack flexibility. The value of Yc depends on the crack depth only.
Consequently, for a specific system its value is constant for all modes of vibration. Thus, crack location can be
predicted by plotting the value of Gi(x) versus location on beam span (x) for the first three modes.
Theoretically these modes will intersect at a single point, which is the crack location. However, in reality, the
modes frequency values of bdc and bd are found experimentally with some measuring error. Therefore Gi(x)
curves will not intersect at a single point; instead, they will intersect within a small region. To simplify the
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crack position search, a modes distance function s(x) is defined as

sðxÞ ¼
1

NM

G1ðxÞ � GNMðxÞ
G1ðxÞ

����
����þ XNM�1

i¼1

GiðxÞ � Giþ1ðxÞ
G1ðxÞ

����
����

" #
, (9)

where NM is the number of measured system natural frequencies, which is equal to three in this work.
Theoretically, this function is equal to zero at the crack location, but in reality, this function has a minimum
value at crack location.

After detecting the crack location, the crack depth is identified by substituting the detected crack location
into Eq. (6) to calculate the theoretical frequency change in the first three modes of vibration due to the crack
for different crack depths. Ideally, at the estimated crack depth all theoretical frequencies shifts should
perfectly match with the experimental ones. However, practically this is not the case and each frequency shift
will individually match with the corresponding experimental one for a certain crack depth. Therefore, to
estimate crack depth accurately, a crack depth distance function D(D) is defined as

DðDÞ ¼
1

NM

XNM

i¼1

bi
dc � bi

d

bi
d

 !
measured

�
bi

dc � bi
d

bi
d

 !
theory

������
������. (10)

If this function is plotted versus crack depth, its value will be zero at the estimated crack depth in the ideal
situation. However, in reality this function has its minimum value in the vicinity of the estimated crack depth.

Two methods are usually used to verify the reliability of the proposed mathematical model: the first one is
experimental while the second is the FEA. In this work, FEA is considered as method of verification, because
it provides a simple and inexpensive way to generate as much checked points as desired. Three-dimensional
FEA is carried out using the commercial software ANSYS 8.0 to verify the results obtained from the proposed
mathematical model. In FEA, 10-node tetrahedral element type was used to model clamped-free stepped beam
carrying a rigid disk; the crack is represented by sharp V-notch. A non-uniform mesh with very fine mesh in
the vicinity of the crack is used in FE modeling (Fig. 1b). Also, convergence test to the first four natural
frequencies of the beam was applied to insure high precision results.

3. Results and discussion

A mathematical model to simulate lateral vibration of a stepped cantilever cracked beam carrying a rigid
disk at its tip is proposed utilizing the assumed mode method. The crack is modeled as equivalent massless
rotational spring with flexibility derived from fracture mechanics concepts. This mathematical model is used as
a base for crack identification algorithm. The number of trial functions used in the assumed mode method is
taken to be N ¼ 11 to warrant high precision in calculating the first three natural frequencies of the system.
These trial functions are found by solving the eigenvalue problem of two equal cross section beams connected
by massless torsional spring at the crack position [14]. The effects of crack depth and location on the first three
natural frequencies of the system are investigated. The results obtained from the proposed mathematical
model are compared with the results obtained by using FEA. In FEA a steel beam (E ¼ 207GPa,
G ¼ 79GPa, r ¼ 7700Kg=m3, u ¼ 0:3) with the following dimensions in millimeters: B ¼ 8, H1 ¼ 10, H2 ¼ 5,
L1 ¼ 300, L ¼ 650 is used (Fig. 1a). The disk dimensions in millimeters are: height ¼ 70, thickness ¼ 20,
width ¼ 8 and its material properties are (E ¼ 2070GPa, G ¼ 790GPa, r ¼ 52250Kg=m3, u ¼ 0:3). Using the
aforementioned material properties will lead to a rigid disk (relative to the beam) having a mass equal to the
beam mass. For certain crack depth and location the first three frequencies of cracked and intact beams are
found using FEA. These values are considered as experimentally measured data and are substituted into the
proposed identification technique to retrieve the crack location and its depth.

The effect of the attached disk and the crack location on the first three natural frequencies of the system is
presented in Figs. 2–4 for different crack depth ratios. Fig. 2 shows the variation in the first natural frequency
change ratio due to crack versus wide range of crack locations and depths. The figure indicates that decreasing
the distance between the crack and the beam tip reduces the frequency change ratio. This ratio exhibits big
reduction jump when the crack crosses the step section. In addition, the figure illustrates that attaching a disk
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Fig. 2. First natural frequency change ratio due to crack versus crack location. (a) Disk mass Md ¼ 0:0 and (b) disk mass Md ¼ 1:0;
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to the beam decreases the above change by a noticeable amount if the crack position is on the thick side of
the beam. On the contrary, if the crack position is on the thin side of the beam the above change ratio
is slightly increased. These results are observed for all crack depths. The second natural frequency change
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ratio versus crack location is presented in Fig. 3 for different crack depth values. This figure reveals
that decreasing the distance between the crack and the beam tip decreases the above ratio in some regions
and increases it in some others. Attaching the disk to the beam tip increases this ratio when the crack is
located on the thick side, away from the step, but when it is located close to the step this ratio decreases. If
the crack is located in the thin side, the disk causes reduction of the above ratio by slight amount. These
results are observed for all crack depth values. The third natural frequency change ratio versus crack
location is shown in Fig. 4. This figure shows that the above ratio has high fluctuation versus crack
location.

In all previous figures, the results obtained from the proposed mathematical model show sound agreement
with the FEA results, except in a very narrow region at the step location where there is a little deviation
between the two groups of results. This is related to the sharp change in the beam geometry, which may lead to
numerical computational error in the proposed mathematical model when the crack is close to the step. Also
the mathematical model does not account for the stress concentration due to the step in the beam in addition
to neglecting the interaction between the above stress and the one created from the crack. However, the
fluctuations observed in the model results are also traced by those of FEA. These fluctuations are explained by
the fact that the influence of crack is altered by the mode curvature as well as by the closeness of the crack to
beam nodes. For the first three natural frequencies Fig. 5 shows the effect of crack depth on the frequency
change ratio for crack located on the thick side (xc ¼ 0:4) and on the thin side (xc ¼ 0:75), for beam with and
without a disk. It can be seen that increasing the crack depth will increase the above ratio for a beam with or
without a disk, and for both crack locations; on the contrary, attaching the disk to the beam reduces the above
ratio for both crack locations. The results obtained from the model are traced also by FEA approach. An
interesting phenomenon is noticed for the crack located at xc ¼ 0:4, whereby adding a disk to the beam caused
the changes in the first and the third natural frequencies ratios close to each other. This is due to having the
beam curvature for the first and the third modes close to each other at this location when the disk is
introduced. This observation demonstrates that in order to use the variations in system frequencies to identify
crack, the interaction between the effects of the crack and the disk inertia on the dynamic characteristics of the
beam should be included in the analysis.
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Fig. 5. The first three natural frequencies change ratios versus crack depth. Rdb ¼ 0:03581, (a) disk mass Md ¼ 0 crack location xc ¼ 0:75,
(b) Md ¼ 1 xc ¼ 0:75, (c) Md ¼ 0 xc ¼ 0:4, (d) Md ¼ 1 xc ¼ 0:4. FE: K, 1st; � , 2nd; m, 3rd. Theoretical: , 1st; ,

2nd; , 3rd.
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With the confidence gained by comparing the results obtained from the proposed mathematical model with
that of the FEA, the FEA values for the first three frequencies for cracked and intact beams with attached disk
are substituted into the proposed identification technique to retrieve the crack that is introduced into the FE
model. Figs. 6 and 7 show different cases of crack location prediction, where the modal equivalent crack
flexibility (Gi(x)) and the modes distance function (s(x)) are plotted versus beam span location. The crack
location can be estimated from the s(x) curve where the lower sharp edges are pointing to a potential crack
position. The results reported in Fig. 6 show that the s(x) curve has only a single lower sharp edge pointing to
the crack location. This single indicator is found in the majority of the test cases, leading to unique prediction
of crack location. On the other hand, for few cases, the s(x) function predicts multiple crack locations as
shown in Fig. 7. This multiple prediction can be reduced by cross-referencing the sharp edges of the s(x)
function with the Gi(x) functions. Since the values from the Gi(x) curves should be equal at actual crack
location, thus relating the sharp edge points in the s(x) curve to the Gi(x) curves intersection leads to a
potential actual crack location; this reduces the multiple prediction points using s(x) curve to one or two
locations only.
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Fig. 6. Mode equivalent crack flexibility Gi(x) and Modes distance function s(x) versus beam span location (x) Md ¼ 1:0; Rdb ¼ 0:03581.
, s(x); , G1; , G2; , G3. (a) xc ¼ 0:7, (b) xc ¼ 0:4, (c) xc ¼ 0:85 and (d) xc ¼ 0:75.
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After anticipating the crack location, the crack depth distance function D(D) is plotted versus crack
depth. The first three theoretical frequencies change ratio are found by substituting the predicted
crack location into the proposed mathematical model. The measured frequency change ratios are taken
to be the FEA values. Fig. 8 presents the D(D) function versus crack depth in terms of different crack
positions and for an actual crack depth ratio of 0.3. The curve has its minimum value at a potential crack
depth value, and it can be seen from the figure that the minimum curves values are around the actual
crack depth.

Table 1 shows the actual crack location and depth values versus the estimated ones found from
Figs. 6–8, also additional cases that have distinctive prediction results are reported in this table. It can be
seen that in few cases the method predicts multiple crack locations; however, one of these is in the
neighborhood of the actual crack location. Using the predicted crack location closer to the actual one
to find the crack depth, a single crack depth value is estimated; also, this value is found to be very close
to the actual crack depth. The percentage error in predicting crack location or depth varies between 1%
and 11%.
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Fig. 7. As Fig. 6 but for (a) xc ¼ 0:6, (b) xc ¼ 0:5, (c) xc ¼ 0:65 and (d) xc ¼ 0:35.
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4. Conclusion

This research proposed a simple technique based on mathematical model to identify crack location
and depth in a stepped cracked cantilever beam carrying a rigid disk. Using the assumed mode method
combined with Lagrange’s equation, a simple mathematical model describing the lateral vibration of the
beam is derived. In that formulation the crack is modeled as a massless spring. Its flexibility is added to
the global intact beam flexibility matrix as global flexibility. The mathematical model accounts for the
beam rotary inertia as well as the interaction between the crack and the disk inertia. The results obtained from
the proposed model were traced by similar results obtained from FEA. The proposed crack identifi-
cation algorithm has the capability to predict the crack location in addition to its depth by furnishing
simple functions: s(x) (modes distance function) to estimate crack location, as well as D(D) function
(crack depth distance function) to estimate crack depth. These two functions utilize the derived mathematical
model and the measured variation in the first three natural frequencies due to crack for its identification.
These two functions enable estimating the crack depth and its location with an accuracy ranging from 1%
to 11%.
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Table 1

Crack identification results using FE data

Crack location (xc) Crack depth (D)

Actual Estimated Error % Actual Estimated (using estimated xc) Error %

0.30 0.277 7.7 0.3 0.297 1.0

0.35 0.310 11.4 0.3 0.305 1.7

0.40 0.418 4.5 0.3 0.281 6.3

0.50 0.460 8.0 0.3 0.347 15.7

0.55 0.560 1.8 0.3 0.320 6.7

0.60 0.262 or 0.61 129 or 1.7 0.3 0.320 6.7

0.65 0.634 or 2.5 or 0.3 0.318 6.0

0.647 0.5

0.70 0.673 3.9 0.3 0.308 2.7

0.75 0.757 0.9 0.3 0.317 5.7

0.80 0.793 0.9 0.3 0.309 3.0

0.85 0.818 3.8 0.3 0.317 5.7

0.40 0.415 3.75 0.5 0.47 6.0

0.40 0.415 3.75 0.4 0.39 2.5

0.40 0.417 4.25 0.3 0.28 6.67

0.40 0.415 3.75 0.2 0.19 5.0

0.40 0.383 or 4.25

0.543 35.75 0.1 0.089 11

0.700 75

0.75 0.756 0.80 0.5 0.494 1.2

0.75 0.756 0.80 0.4 0.39 2.5

0.75 0.757 0.93 0.3 0.308 2.67

0.75 0.756 0.80 0.2 0.21 5.0

0.75 0.384 or 48.80

0.61 18.67 0.1 0.09 10.0

0.71 5.33
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